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Introduction

There are many cases in the applied optics when the
point-spread function of the desired optical system is not diffraction limited
(Airy’s pattern) but seems like a blur spot with a size much more greater than
the diameter of the central Airy’s disk. The most trivial examples of this kind
are stellar (i e, point sources) turbulent images observed by means of ground-
based large optical telescopes.” If the optical system is not precisely focused,
the resulting point source intensity distribution g(r) will differ from that in
the focal plane (x, y,) depending on the distance Af between the plane (x,, v,)
and the plane (x, v), where the intensity is measured by the detectors (Fig. 1),
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FFig. 1. Scheme of the optical system

{£°. ¥')— input aperiure plane; (x,, g} — focal plane; (x, y)
— out-of-focus plane;

f—focal length; Af — out-of-focus distance ; f:——-r;/rg_—-rlfrg—-

central screening

37



We shall also denote by prime’s the quantities referred to the input aperture
plane {x’, ¥') and by f the focal length. For concreteness, it is considered the
case where fhe plane {x, y) is behind the plane {xg ¥o) (Af>0). Further, we
shall assutne that the circular input aperture of the optical system has a cen-
tral screening (shaded region in Fig. 1), as it is usual for the large telescopes.
According to the accepted in this paper geometrical optics approach, the illn-
minated area is a ring with inner radius r, and outer radius ry (r/f=r4/Af;

Fig. 1), The screened part of the input (output) aperture ig characterized by
the parameter e=r,/r,=r/ry=const<1,

During the last two decades many new methods for restoration of distor-
ted images are developed and their practical realization is proven to be useful
[1, 2, 3]. In particular, such techniques are applied in optical astronomy for
development of out-of-focus images (Hubble Space Telescope) and images obtai-
ned through the turbulent Earth’s atmosphere. The jater casc is implicitly con-
sidered as a preferred range of applicability of the results obtained in this
paper.

Let us denote by G,(x, ¥ the intensity distribution of a precisely focused
image and by G{x, y) the intensity distribution of the same imagein the out-of-
focus plane (x, y) where the light sensitive detectors {photographic emulsion,
CCD-matrix, etc.) are placed. Supposing that the principle of the linear super-
position is fulfilied, the relation between these distributions is given {in the
absence of noise) by

oo

(1) Glx, y) = f f Gi(x—E, y—mh(E, n)dedn,

—_—a

where the integration over the coordinates & and m is performed in the out-
of-focus plane. In practice, if the source is very bright, we may integrate over
the area where the ratio signal to noise Is greater than unity. In the above
expression /(x, y) is the point-spread function of the considered out-of-focus
optical system, e. g, this is the intensity distribution in the out-of-focus plane
(x, y¥) when the system is illuminated by light rays parallel to the principal
axis. According to the accepted geometrical optics approach, within a norma-
tizing multiple, A(x, y) is given by

. ——— 1, ifrs\fxﬂ-l—yzsr;
3 Br=J x2 2 ={ 1 3
@) (r=\ 2+ 5%) 0 in the other cases.

Hereafter throughout this paper we assume that Gy(x,, ¥,) is the point-
spread function of the tutbulent medium. Fried [4] has pointed out that it is
possible a separation beiween the point-spread functions of the atmosphere and
the telescope for long enough exposure times. According to Fried’s results,
the modulation transfer function (MTF) of the optical system “turbulent atmo-
sphere - telescope” Ty, is simply the product of the MTFs of the atmosphere
7, and the telescope 7, in separate: t,=t,7. Here 7, 7. and 7 are the
Fourier iransforms from the corresponding point-spread functions. However, in
this paper we prefer to use the convolution integral (1) in order to compute
the long-exposure point-spread function g(r) of the combination “turbulent
medium + optical device” system (without including the detector responce).
Concretely, we shall investigate the distortions caused by the out-of-focus
registration of the intensity distribution conditioned by point source, observed
through a turbulent medium. To specify this case (as we have already done
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above), we use small letters for the point source intensity distributions
&Xo ¥o) and glx, ¥) (. e., point-spread functions) in the focal plane (x5 Vo)
and in the out-of-focus plann {x, ¥), respectively.

Approximation by a quasi-Gaussian function.
Qualitative treatment of the problem

In this paragraph we shall assume that every of the
observed point sources causes a quasi-Gaussian intensity distribution g{r,) of
the light in the focal ptane {x,, y,) of the optical system

3 &ol7ra=\ X2+ y2)= S, exp (—rin/B,),

where By,={(2c62)% is a constant determining the size of the circular spoti.

So=S84(0,) Is a normalization constant depending on the total energy flux of
the image and its numerical evaluation is not important in this paper, because
we are interesting only on the relative intensity distributions within the images.
The power n, describes the deviation of the distribution 8o(ry) from the
Gaussian one (r,=1). We assume that ny,=constant for the whole area of the
image (i. e, n, does not depend on r,). We emphasize that the later statement
is true for the focal plane (x,, Yo) and, generally speaking, is not true in the
out-of-focus plane (x, y), where the intensity is measured by the detectors.

The observed intensity distribution g(x, y) may alsc be fitied by a quasi-
Gaussian function

(4) glr=y x® + 3% )= g(x, y=0) = Sexp [— 5™ /B] ; B={2c%)"),

but, generally speaking, we expect that for this approximation the power is
not a constant and will depend on r (or x, because we investigate the inten-
sity distribution in the direction y=0). Obviously, the point source out-of-focus
images have lower central intensities (S< Sp) and are enlarged (B >B,). If | Af|
is greater, the redistribution of the light energy from the central part of the
image to its outer part is a more pronounced effect (but the total light flux is
not changed). If we assume that the power n(x) does not vary too fast into
the interval (x—Ax, x+Ax), where Ax<c (i. e, we consider n(x) locally as
a constant), we can obtain the following expression [5]

(5) nlx)="0,5 [1 +x(%’j_— ﬁ%:?)]’

where the prime’s denote differentiating with respect to x. By means of the
above approximate expression we are able to evaluate the global (with respect
to the size of the image) changes of the power # which describes the slope
of the intensity distribution g(x).

In this section we shall assume that the power 7, in the expression (3)
has a constant value for the whole area of the (precize focused) image, but
its values, generally speaking, are not equal to unity. According to this accep-
tance, we shall also consider the powers Nga=>Ngs=>1 >ngy>n, which do not
depend on x. The relative comparison between distributions Zoloe; noy)y Golx s Mgy),
gu(x; ngs) and gy(x; ng) is given in Table 1. It would be pointed out that

(6) 8(0; ny)=8,=1; (i=1,..., 4)
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Table 1
Comparison berween guasi-Gaussian intensity distributions for different values of the power n,

gy <ty <1
x<y2 a, x>{2 g
x# x2
In ( —)<o0 In ( . )> 0
20y 204
x3 x2 x? x2
mInl———i>nIn (-7 — My, In | ——— 1] «<nye In —-)
il ( 20'5 ) o2 ( 26‘(2} ) oL ( 20_3 ) e ( 20%
( xz{ )”nl - ( x* )”us ( X2 \np < ( x¢ )”on
200 200 202 200
& {x; ngp) < g (x7 nyy) & ix; ny) > g (x) #yy)
1<Catgg gy
x<\2 g, 4‘>E“u
X ‘ xé
In ——2—)<0 In( 3 )>0
PL 203
X2 x® x* x*
Myg In | >np, In [ ——— Hyp In - ){H. In ( )
" ( 20y, ) - ( 20'é ) o ( Zcf, = 203
X2 \mgy, x® Amy, X% \iys %2 iy,
(E? ) > (—202‘) 202 ) S\ 2
0 0 0 0
£ (0 mygd < g (X7 myy) £ (x; Hgs) > & (X7 gg)
and
(7) 2\200; me)=e"1=0,368; (i=1,..., 4.

The later expression (7) means that all intensity distributions gq(x; 7
{{=1,..., 4) have equal widths (y2c,) at the intensity level 36,8%,. Roughly
speaking, the area of the image may be devided into two parts (y=0, r=x):

(iy inner part: 0=<x=<\20,;

(i) outer part: x==2c,.

According to the above description and to Table | {(bottom rows), the
intensity decrease in the inmer parts of the point source images is slower
{with the increase of x) for larger values of n, In the outer parts the situa-
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Flg, 2. Comparison between point source intensity distributlons
golx, np) for different values of iy
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Fig. 3. Schematic comparison belween the precise focused dis-
telbution gofx; ng} and its out-of-focus distorted {“flaitened”)
intage g{x; n( ) i

I — golx; mp=const); 2 — glx; n(x)+consi)

tion is opposite: the intensities g,(x) decrease faster for larger n, (Fig. 2).
Having in mind these considerations we are able to make a qualitative estima-
tions about the behaviour of the power # for the out-of-focus images, If the
out-of-focus distortions are not very “strong” {6], the energy flux is redistri-
buted from the inner parts to the outer parts of the images (the total amount
of the energy flux is not changed). Consequently, the intenslty decreases in the
inner parts and increases in the outer parts (here we do not use the norma-
lization of the centra] intensities S=1; eq. (4)). This circumstance leads to
the slower decrease of the infensity g(x) in the inner parts and to its some-
what faster decrease in the outer parts in comparison with the precise focused
images (Fig. 3). That is to say, the out-of-focus intensity distributions 8(x) are
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“flattened” distributions ge(x). By a rough analogy with the resulfs in Table 1
and Fig. 2, we expect that the mean (averaged over the inner or outer parts),
values of the power n are greater than the corresponding undistorted , parents*
values of the power n, This approximate qualitative conclusion is in accordance
with the numerical estimations for the particular Gaussian case {n,= 1) obtained
in a previous paper [6], as it would be expected from the continuity reasons.

Turbulent point-spread function as a sum of
Gaussian curves

In an earlier work [6], assuming that g () is a Gaussian
curve (n,=1), we have derived an anaiytical expression about the out-of-focus
intensity distributlon g{x). This result can easily be generalized if we consider
a sum of Gaussian curves describing the intensity distribution (¥4-=0)

m
@) &lxoy= O porexp (—x2262).
f=1

Here py (i=1,..., m) are weight coefficients which do not depend on x,»
i is the total number of the summed up Gaussian distributions with disper-
sions of, ({=1,..., m), respectively. Because of linearity of the differentiation
and integration operations, we are able directly (without performing interme-
diate calculations) to write by analogy with the equation (11} from [6]

o3

m m i
2k
G @n7ex)= 2/1 Poi Bt (5} + 3,2? Pot 2 {(k 1)_2( 2;:; ) Bulx)s
i=1 =1 E=i y
where
x24r? x4k
10 ; =g2 — =" (— 2)], i=1,,..
(10) By (%) Uo;[ exp( 203!) e\~ 7 (i=1,,.., m)
and
(an B =g |r2% ( A4y 2% ( x2+r§):|
) =0l APl = g e\ ~ g

+2kc§!8m_m(x), (kZI, 2. = L..., M).

[t would be noted that cvery coefficient p,; depends, however, on oy py
=po, (o) (i=1,..., m), by analogy with the dependence S,=Sy(s,) as in the
case of a single Gaussian curve [6]. This circumstance must be taken into
account if we'try to perform the transition o, —0 for some (or 2ll} of the
components in the sum (9). As can be seen from (10) and (11), B, {(x) and
B, {x) tend to zero when o,—0 (i=1,..., m). But the corresponding coeffi-
clents py ((=1,..., m) must approach infinity in such a way that the total

light flux in the out-of-focus image to remain a constant, eQual toff & (%6

Yoddx,dy, Moreover, the transitions o,,—0 {(i=1,..., m) are physically incor-
rect because they do not correspond to the adopted in this paper geometrical
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optics approach. Consequently, we shall consider all oy (i=1,..., m) as.a
large enough strictly positive quantities with preliminary fixed values,
Differentiating with respect to x one or two times the above three expres-
stons  (9)-(11), we shall obtain the first and second derivatives g'(x) and g"{x),
correspondingly, We shall write in an explicite form only the final results

n m oo
(12 @ g = 2 pabi i+ 2 ou 2 g () B
=1 =1 k==l 0

it oo

E 4 2 i 1 & \3&
+ B L ’
el Pos — {k I)E( 20.%{) Bg;(x);
where the functions Bj(x) and B, (x) are given by

, x2 x4y .o
(13 Bw(x)-——x[exp (—— ™, 2)—exp (— 2oL ﬂ (i=1,..., m}

Of

and

’ 2 2 %8 2

of
2k B) 0, (R=1, 2. i=1,..., m).

The second derivative of the intensity distribution is

# . u m"-’ ‘- — k —_
(18 @oge) = 2 rbi+ X e B B ) B0
] i=1 k=l 0o

=l
ol

" (- n
2k i Gk : 1 % .,
23 1_@?(_,) =B S py S W(Q“‘;) B (x),
=1 i=1 Sop

F=l 23; al
where
2 2 x2+r2
o sir=(2 e~ 222) <o (=2 o
{16} B (x) (53; 1)lexp P exp 2, {i _1 , m)
and
24 rd ' B4ry
17 B () = % )[ 2 (_" t_ o (_ 2)}
(17) %) (0_3! 15 rytexp 208 ’T2 exp 202,

+2k0LBr, (%); (=1, 2...5i=1,..5, m).

Taking into account that the coefficients py, (i=1,..., m) do not depend
on x, It is possible to show that for x=0 the power 7(0) is equal to unity.
Indeed, it is casy to estimate from (9), (12) and (I5) that fis

o~ /2 2
(18) (2m)y1g(0) = 2 po,-cgi[exp(—i—)%)—exp( _'.:2_2)]’
i=1 Cgy Og¢

(19) (2 1g'(0)=0
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and

mn " 2
o 1
20 (2n)~12"(0) = Z Dot By {0)+ 2, 2p4 (20?) B {(0)
=1 =1 :
el 2 3 2
=) 2 eyl =L 1
é Por {exp( 26&) e}_(p( 263£)+2(20&) B],(O)].

Obviously, the ratio —xg'(x)/g(x) tends fo zero when x approaches 0.
To evaluate xg"(x)/g'(x) for x=0, we must estimate the limit g'(x)/x for x—0.

(21) lirrilj [g'{x)x] =2n 1ing ] po,[x"lB{,f(x)

=0

o9

N 2k f 1 AR g A TR TR
+ el (k !)2( 2633) X ka(x)+ é: (k |}2(263£ ) X ka(x)ji .
Taking into account (13), (14) and also the expression (20), this leads to

2

" pj , 2
(22) }jg; [g'(x)/x]=2n > pof{ ew(~i)— °Xp(‘g‘§gj) + 2(;,;:37) B;,(O)lé g0y

=1 263
Consequently
(23} lim fxg"(x)/g'(x)]=1
and
(24) n{x=0)= 1.

This equality means that if the initial (i. e, precise focused) point source
intensity distribution is a Gaussian one {#,=1)} or sum of Gaussian curves,
then the curve S(x)=x/[2n(x)—1] for x close to zero is a nearly straight
line with a slope of 45° for an arbitrary value of Af. This result is indepen-
dent of the values of the coefficients p,, and dispersions oy (i=1,..., m). It

would be noted that the Gaussian curves in (8) have maximal values which
are not displaced from the center of the image x,=0. For every single Gaussian
curve term in (8) the results obtained in the previous paper [6] may be applied
separately, Then for some of the terms (with small ;) the out-of-focus distor-
tions would be “strong”, for other terms (with larger o) distortions would
be “moderate” and, finally, for- the largest o, they {(eventually) would be
“slight”, Having in mind that the “strong” distortions are not well described
{(in the case of a single Gaussian curve) by the power a(x) ([6]; Fig. 3), we
should use the expression (8) (or (9)) with some cautiousness if terms with
small o,; are included. This remark is connected also with the difficulties which
may arise with regard to the convergence of the infinite series in (9), (12)
and {15} when some (or all) of the quantities o, (i=1,..., m) tend to zero.
As mentioned earlier, description of the out-of-focus distortions by means,
of the power n{x} (5) is not a sujtable tool in the case of “strong”
distortions. In the case of a superposition of Gaussian curves (8),
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the later statement can be checked by assigning concrete numerical values
to the number of terms m, dispersions 6% (i=1,..., m) and weights

Poi (i=1,.... m). We shall not perform here these calculations. Qualitatively,
it is evindent that if the weights p,; (corresponding to small o, such that
the out-of-focus distortions are “strong”) are large, it would be expected that
the power n(x) is not a useful variable parameter giving the slope of the
function g(x). Nevertheless, the expression (9) still gives a reasonable descrip-
tion of the out-of-focus intensity distribution. It would be emphasized that the
above conclusions about the power n(x) do not concern the undistorted power
no, if the point-spread function g,(r,) (3) is addopted.

Conclusions

We have considered an optical system with central scree-
ning of the input aperture and the performed computations are made in the
geometrical optics approach. The point-spread function of the turbulent atmos-
phere is approximated in two ways: (i) by a single quasi-Gaussian cutve (3),
and (ii) by a sum of Gaussian curves with different weights and dispersions (8).
In the later case we give exact analytical expressions describing the out-of-
focus intensity distribution g(r). Such results may be useful when they are
applied for reconstruction of out-of-focus distorted images obtained during
observations through a random turbulent medium. Then £(r) is simply the
point-spread function of the system “turbulent atmosphere + out-of-focus
telescope”. We entirely neglect the distortion effects like koma, astigmatism, etc,
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KpasuraycoBa (hyukilust Ha uMiy/cHUS OTKJIHK
H JIBe anpOKCUMEaluH Ha HeHnoTO H3BBHYOKANHO
pasnpefie/leniie Ha OCBETEHOCTTA

Hunumop Jumumpos

{Peszwpme}

Pasrnenanii ca nBa cayyas na anpoxCHmMupane Ha QyHK-
IMATa HAa HMIOYJACHHS OTKJHK 32 HalmoO#eHus npes TypOynenTtua cpefa: 1) epu-
HHYHA KBASHFAYCOBa KPHBa g, (Fo}~exp { —r¥s/B,y), xbAero By e Koucraira,

ONpefie/iAllia pa3Mepa Ha u300paXKeHUeTO HA TOYKOBHA HITOULIHK, A4 34 CTENeH-
HHA NIOKA3ATEN Ay € TPHETO, Ye HMa HOCTOAHHA CTOHBOCT 2) cyMa OT raycoBH
m
Ty 3 2 2 : 2
KPHBH Gy {ry)= Z PoeXp { —ry/200;) ¢ pasauyiiyM TerAa P M AHCHEPCHH Og
i=1 . _ _ :
Axo n3aMepBaHHfTA HA OCBETEHOCTTA HE €A M3BLPIIEHM BLE (oKasiHata paBHHHA
Ha TesiecKona, U3BBHPOKAMHOTO pasiipejlefeHle Ha OCBeTEROCTTE & (1) COLLUO MOXe
Jd Objle anpOKCHMHPAHO € KBa3uraycosa, Kpuba, HO CTENGHHHAT NOKA3aTed f
e 3aBHCH OT 7. B cayuas 1) e janeHo KadecTBeHO ONHCAHUE Iid NOBEJRIHETO Ha
n M B cayyas 2) e HOoJyuyeHo TOUHOTO dHAAWTHYHO npen{:TaBHHe 3a pasnpepene-
HHeTO Ha ocBereHoctTa g (r). B nmocaenuus cayua# e roxasano u uye n (0)=1
34 NPOHUSBOMHH Pg;, Op; U M3BBLHOOKANHO OTMecTBane Af. Benuxu OLIEHKH ca
U3BBPLIEHH B NPUGIMKEHHETO HA TEOMETPHUHATA ONTHKA.
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